The co-evolution of taxi drivers and their in-car navigation systems

Fabien Girardin, Universitat Pompeu Fabra 2008 AAG annual meeting, April 15, 2008

Motivation

- 17% U.S. adults use a GPS location device/service. 33% of them use it in their vehicle (Harris Interactive, 2007)
- Relative market success with issues of poor intergration of the technology into driving practices
- Chance to observer how users adapt to the technology and adapt the technology to their needs (co-evolution - O'Day et al, 1996)
- Observe how positioning and navigation technologies integrate into/change already existing practices and how practices influence the use of the technology
- Inform the design

Aim

- Similar approach as other research on understanding mobility practices with technology devices (Activities not as isolated events, but situated withing a context)
- Socio-technical lenses to analyze the complexities of changes created by the introduction of new technologies
- Acknowledge change and adaptibility as inherent part of location-aware system use
- Focus on drivers for whom mobility is a labor

Previous works

- We know that there are issues in realability, wayfinding, the support of mobile workers
- Interaction with the in-car device result in distraction from driving task (often in the news). Studies at an experimental level (see Burnett's work)
- However, device-centered perspective falls short of full appreciation of the envolvment people and their use of novel mobility enhancing technologies.
- It neglects the role of the user in co-constructing technology (technology studied in context)
- Lack of empricial evidences. Particularly usefull for the design of future location-aware systems

Analysis of use, adoption, and appropriation

Not focused on how the system work but how the systems are used

Aspect	Description
Acquisition	Why and how does this new technology get integrated among
	other artifacts, and how satellite navigation systems impacted the
	use of these artifacts.
Gap in expectation	Understand if the reasons to adopt are matched in practice.
Appropriation	How much the system can be trusted and what is the reaction
	when the quality is not met (awareness of the
	limitations/imperfections). Importance of the knowledge of the
	urban environment.
Access to the geoinformation	What kind of geoinformations are used by the drivers both from
	the system and from the environment (experience, radio, interaction
	with customer, context such as visibility to landmarks).

Method

- Interpretative and not statistical
- Examine situated activities
- Ethnography, interviews supported by in-car obsevations
- Users accounts
- Small sample (12 taxi drivers) but, but rich data (extended field notes of accounts and observations). Coded as themes emerges
- 6 months to 25 years of experience

Locus

Barcelona taxi drivers: massive population of early adopters, strong practice of relying on mobile technologies and maps to support their work

Findings

Eco-system of artifacts

Sources of information

- satnav (discussed later)
- "Guia": usefull in areas with points of reference
- Mobile phone: primarly a social link, used when "really lost"
- Newspaper: keep general knowledge of the activity in the city
- Personal notes: list of "unofficial" POI not present in satnav or "Guia"
- The customers is a prime resource for information

Acquisition of tranquility

- Acquisition of satnav is not about performance, safety, or efficiency
- Biggest moment of uncertainty is to drive to unknown neighboroods (villages, remote business areas)
- Satnav is a life saver for getting to destination
- Relieves the car driver to closely observe the environment, to look out for road signs or landmarks
- Relaxes the customer "they know they cannot be cheated with it"
- HOWEVER, the less experience drivers are confronted to system imperfections

Knowledge of the city

- Different appropriation depending on the knowledge of the space
- Inexperience drivers demand of accurate and updated information quickly reached the limits of the systems (unable to judge the accuracy or improvise)
- Their dependance made them rely on the "guia"
- Satnav as a learning tool (passive mode)
- Tendency to rely on it less and less with the experience (for navigation).
 Passive mode used to keep track of radars or speed
- Experienced drivers stopped using the "guia"

Breack the myth of deskilling

- Assumption that satnav makes the practice accessible to cheap labor
- Satnav supports a reduced understanding of the city
- This study shows that knowledge is acquired by multiple sources, technology do not replace it

The different granularity of information

- To go: indication of an area, a neighbood. Coarse-grained (no indications to avoid misleading recommandation)
- To arrive: specific builing number. Fine-grained (with indications). Satnav engaged at a stop, slow traffic.
- To return: Need of landmark. Very cautious in the path taken. Push "barcelona" or "plaza espana" to get back to familiar places. Both fine-grained/coarsegrained

Implication for design

- Big issue of uncertainty and its represenation. Reveal the ambiguity of positioning and incomplete map data (important for inexperienced drivers)
- Distinctive usage in a journey. Tailor the navigation to the context (go, arrive and return)

Conclusion

- First chance to observer how users adapt to the technology and adapt the technology to their needs in the context of location-aware systems.
- Limitations in the generalization: spanish drivers (cultural bias), males (gender bias), workers (activity bias)
- Wayfinding, tendency to be used less over time
- Not necessarly deskilling of navigation and orientation
- Maybe deskilling in social. Transfer of the trust from social interacting to machine-supported. May lose interaction with the client, important in the learning process. Or new kind of interaction